Skip to content

Ollama Model Selection Guide: Best Bang for Buck by Task Type

Optimizing for: Model Size → Effectiveness
Smaller models ranked higher when performance is competitive


Quick Reference: Top Picks by Category

Task Type 🥇 Best Value 🥈 Mid-Tier 🏆 Best Performance
Thinking/Reasoning DeepSeek-R1 (8B distill) QwQ (32B) DeepSeek-R1 (671B)
Coding DeepCoder (1.5B/14B) RNJ-1 (8B) Qwen3-Coder (30B)
Vision MiniCPM-V (8B) Qwen3-VL (4B) Qwen3-VL (32B/235B)
Embedding Nomic-Embed-Text (~137M) EmbeddingGemma (300M) Nomic-Embed-V2-MoE (305M active)
Tools/Agentic Ministral 3 (3B) Mistral Small 3.2 (24B) Qwen3 (30B-A3B)
General Purpose Gemma3n (e2b) Gemma3 (4B) Qwen3 (235B)

🧠 Thinking / Reasoning Models

Chain-of-thought, math, logic, complex problem solving

Model Size Active Params Key Strengths Value Rating
DeepSeek-R1:8b 8B 8B Distilled from 671B, excellent reasoning ⭐⭐⭐⭐⭐
DeepSeek-R1:1.5b 1.5B 1.5B Tiny but capable for basic reasoning ⭐⭐⭐⭐
Nemotron-3-Nano 30B 3.5B Hybrid MoE, configurable reasoning ⭐⭐⭐⭐
QwQ 32B 32B Competitive with o1-mini, DeepSeek-R1 ⭐⭐⭐
Olmo 3.1 Think 32B 32B Open weights/data, MATH 96.2% ⭐⭐⭐
DeepSeek-R1:32b 32B 32B Distilled, strong benchmarks ⭐⭐⭐
Qwen3:30b 30B 3B MoE, thinking mode available ⭐⭐⭐
DeepSeek-R1:70b 70B 70B Near full-model performance ⭐⭐
DeepSeek-R1:671b 671B 671B SOTA, approaching O3/Gemini 2.5 Pro

Recommendation: Start with deepseek-r1:8b - it's the sweet spot for reasoning on limited hardware.


💻 Coding Models

Code generation, repair, completion, agentic coding

Model Size Active Params Specialties Value Rating
DeepCoder:1.5b 1.5B 1.5B Code reasoning, RL-tuned ⭐⭐⭐⭐⭐
Qwen2.5-Coder:3b 3B 3B 40+ languages, code repair ⭐⭐⭐⭐⭐
Granite3.3:2b 2B 2B FIM support, 128K context ⭐⭐⭐⭐
RNJ-1 8B 8B SWE-bench 20.8%, tool use, STEM ⭐⭐⭐⭐
Qwen2.5-Coder:7b 7B 7B Strong code reasoning ⭐⭐⭐⭐
DeepCoder:14b 14B 14B O3-mini level (60.6% LiveCodeBench) ⭐⭐⭐⭐
Devstral 24B 24B #1 open source SWE-bench (46.8%) ⭐⭐⭐
Devstral-Small-2 24B 24B SWE-bench 65.8%, agentic ⭐⭐⭐
Qwen3-Coder:30b 30B 3.3B MoE, 256K native context ⭐⭐⭐
Qwen2.5-Coder:32b 32B 32B GPT-4o competitive ⭐⭐
Qwen3-Coder:480b 480B ~44B Top agentic coding model

Recommendation: qwen2.5-coder:7b or rnj-1 for best balance. deepcoder:14b if you need reasoning-heavy code.


👁️ Vision Models

Image understanding, OCR, video, multimodal

Model Size Input Types Key Features Value Rating
MiniCPM-V 8B Image/Video Beats GPT-4o mini, 1.8M pixels ⭐⭐⭐⭐⭐
Gemma3:4b 4B Image 128K context, multimodal ⭐⭐⭐⭐⭐
Qwen3-VL:2b 2B Image/Video 256K context, OCR ⭐⭐⭐⭐
Qwen3-VL:4b 4B Image/Video Visual coding, spatial ⭐⭐⭐⭐
DeepSeek-OCR 8B Image Specialized OCR, token-efficient ⭐⭐⭐⭐
Ministral-3:3b 3B Image Edge deployment, 256K context ⭐⭐⭐⭐
Qwen2.5-VL:3b 3B Image Edge AI, structured outputs ⭐⭐⭐⭐
Llama3.2-Vision:11b 11B Image Visual recognition, captioning ⭐⭐⭐
Qwen3-VL:8b 8B Image/Video Balanced performance ⭐⭐⭐
Mistral-Small-3.1 24B Image 128K context, fast inference ⭐⭐⭐
Gemma3:27b 27B Image 128K context, 140+ languages ⭐⭐
Qwen3-VL:32b 32B Image/Video Visual agent, OS World top ⭐⭐
Llama3.2-Vision:90b 90B Image Top Llama vision model
Qwen3-VL:235b 235B Image/Video SOTA multimodal

Recommendation: minicpm-v is exceptional value. qwen3-vl:4b for edge deployment with modern features.


🔍 Embedding Models

Vector search, RAG, semantic similarity, clustering

Model Params Active Dimensions Languages Value Rating
Nomic-Embed-Text ~137M ~137M 768 English ⭐⭐⭐⭐⭐
EmbeddingGemma 300M 300M Flexible 100+ ⭐⭐⭐⭐
Nomic-Embed-V2-MoE 475M 305M 768/256 ~100 ⭐⭐⭐⭐
Benchmark Comparison BEIR MIRACL
Nomic Embed v2 52.86 65.80
Arctic Embed v2 Base 55.40 59.90
BGE M3 (568M) 48.80 69.20

Recommendation: nomic-embed-text for English-only. nomic-embed-text-v2-moe for multilingual with Matryoshka support (256-dim for efficiency).


🔧 Tools / Function Calling / Agentic

Tool use, agents, structured outputs, API integration

Model Size Active Key Capabilities Value Rating
Ministral-3:3b 3B 3B Native function calling, JSON ⭐⭐⭐⭐⭐
Granite3.3:2b 2B 2B Function calling, RAG ⭐⭐⭐⭐
Ministral-3:8b 8B 8B Best-in-class edge agentic ⭐⭐⭐⭐
RNJ-1 8B 8B BFCL leader, SWE-bench strong ⭐⭐⭐⭐
Qwen3:4b 4B 4B Tool use in thinking/non-thinking ⭐⭐⭐⭐
Ministral-3:14b 14B 14B Balanced agent performance ⭐⭐⭐
Mistral-Small-3.2 24B 24B Improved function calling ⭐⭐⭐
Qwen3:30b 30B 3B MoE, top open-source agent ⭐⭐⭐
Qwen3:235b 235B 22B Leading complex agent tasks ⭐⭐

Recommendation: ministral-3:3b or ministral-3:8b for edge agents. qwen3:30b (MoE) for complex workflows.


🎯 General Purpose / Lightweight

Everyday tasks, chat, summarization, Q&A

Model Size Active Context Features Value Rating
Gemma3:270m 270M 270M 32K Text only, tiny ⭐⭐⭐⭐⭐
Gemma3n:e2b ~5B 2B - Selective activation ⭐⭐⭐⭐⭐
Gemma3:1b 1B 1B 32K Text, QAT available ⭐⭐⭐⭐⭐
Granite3.3:2b 2B 2B 128K Thinking, multilingual ⭐⭐⭐⭐
Gemma3n:e4b ~10B 4B - Phones/tablets/laptops ⭐⭐⭐⭐
Gemma3:4b 4B 4B 128K Multimodal, versatile ⭐⭐⭐⭐
Qwen3:4b 4B 4B - Rivals Qwen2.5-72B ⭐⭐⭐⭐
Granite3.3:8b 8B 8B 128K 12 languages, FIM ⭐⭐⭐
Gemma3:12b 12B 12B 128K Multimodal, QAT ⭐⭐⭐
Olmo 3.1:32b-instruct 32B 32B 64K Fully open, tools tag ⭐⭐
Gemma3:27b 27B 27B 128K 140+ languages ⭐⭐

Recommendation: gemma3:4b best all-around. gemma3n:e2b for extreme resource constraints.


📊 Size Tiers Summary

Tiny (< 3B active params) - Great for edge/mobile

Model Task Why
Gemma3:270m Basic chat Smallest viable
DeepCoder:1.5b Code reasoning Punches above weight
Granite3.3:2b General + tools 128K context
Gemma3n:e2b General Device-optimized
Qwen3-VL:2b Vision 256K context

Small (3-8B) - Sweet spot for most users

Model Task Why
DeepSeek-R1:8b Reasoning Best small reasoning
RNJ-1 Code + Tools SWE-bench killer
MiniCPM-V Vision Beats GPT-4o mini
Ministral-3:8b Agents Edge-optimized
Qwen2.5-Coder:7b Coding 40+ languages

Medium (14-32B) - Power user territory

Model Task Why
DeepCoder:14b Code reasoning O3-mini level
Devstral Agentic coding #1 open SWE-bench
QwQ Reasoning o1-mini competitive
Qwen3:30b General + agents 3B active (MoE)
Olmo 3.1 Think Reasoning Fully open

Large (> 32B) - Maximum capability

Model Task Why
DeepSeek-R1:671b Reasoning Approaching O3
Qwen3:235b General Top-tier all tasks
Qwen3-VL:235b Vision SOTA multimodal
Qwen3-Coder:480b Coding Ultimate code agent

🔥 Hot Takes: Personal Recommendations

"I have 8GB VRAM"

Gemma3:4b (general) or DeepSeek-R1:8b (reasoning) or MiniCPM-V (vision)

"I have 16GB VRAM"

RNJ-1 (code/tools) or DeepCoder:14b (code reasoning) or Qwen2.5-Coder:14b

"I have 24-32GB VRAM"

Devstral (agentic coding) or QwQ (reasoning) or Qwen3:30b (general MoE)

"I'm building RAG pipelines"

Nomic-Embed-Text + Qwen3:4b retriever/generator combo

"I need OCR/document processing"

DeepSeek-OCR (specialized) or MiniCPM-V (general vision)

"I'm doing local AI dev with limited resources"

Gemma3n:e2b + Nomic-Embed-Text + tool model of choice


Last updated: Based on Ollama model cards as of late 2025